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ABSTRACT

Many point-to-point communication problems are relatively well understood in the liter-

ature. For example, in addition to knowing what the capacity of a point-to-point channel is,

we also know how to construct codes that will come arbitrarily close to the capacity of these

channels. However, we know very little about networks. For example, we do not know the

capacity of the two-way relay channel which consists of only three transmitters. The situation

is not so different in the wired networks except special cases like multicasting. To understand

networks better, in this thesis we study network coding which is considered to be a promising

technique since the time it was shown to achieve the single-source multicast capacity.

First we design and analyze deterministic and random network coding schemes for a co-

operative communication setup with multiple sources and destinations. We show that our

schemes outperform conventional cooperation in terms of the diversity-multiplexing tradeoff

(DMT). Specifically, it can offer the maximum diversity order at the expense of a slightly

reduced multiplexing rate. We derive the necessary and sufficient conditions to achieve the

maximum diversity order. We show that when the parity-check matrix for a systematic max-

imum distance separable (MDS) code is used as the network coding matrix, the maximum

diversity is achieved. We present two ways to generate full-diversity network coding matrices:

namely using the Cauchy matrices and the Vandermonde matrices. We also analyze a selection

relaying scheme and prove that a multiplicative diversity order is possible with enough number

of relay selection rounds.

In addition to the above scheme for wireless networks, we also study wired networks, and

apply network coding together with interference alignment. We consider networks with K

source nodes and J destination nodes with arbitrary message demands. We first consider a
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simple network consisting of three source nodes and four destination nodes and show that each

user can achieve a rate of one half. Then we extend the result for the general case which states

that when the min-cut between each source-destination pair is one, it is possible to achieve a

sum rate that is arbitrarily close to the min-cut between the source nodes whose messages are

demanded and the destination node where the sum rate is the summation of all the demanded

source message rates plus the biggest interferer’s rate.
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CHAPTER 1. INTRODUCTION

We are living in a world that is becoming more social and connected than ever before

thanks to the developments in communication. Communication is constantly altering the way

we live our lives. From how we socialize with others to how we work and to how we entertain

ourselves, communication has become an integral part of our day. Developments like email,

social networking sites like Facebook and Twitter, instant messaging, cell phones, and video

conferencing have allowed us to get in touch with each other quickly for both business and

emergency needs. No matter where we use these services whether we are on travel or in the

comfort of our homes, we want more “speed”, more “reliability” and more “coverage”. Hence,

this ever lasting demand for higher and higher rates and reliability has become a driving factor

for most of the research that is taking place in the academia and in the industry.

In this thesis, we will try to address these problems both in the wireless networks such as

cellular networks, Wi-Fi, WIMAX, etc or in the wired networks such as internet, wired local

area networks (LANs) and so forth. Using sophisticated tools such as diversity-multiplexing

tradeoff [2], we show mathematically how the speed (rate) and the reliability affect each other.

We also propose techniques to mitigate the adverse effects of problems like multipath fading

in wireless networks that will help increasing the robustness, reliability and coverage in the

network.

One of the many problems that needs to be dealt with for higher rates and reliability is

“interference”. We propose to use a promising new technique called interference alignment [3]

to deal with the interference problem. The techniques proposed in this thesis for these problems

can be categorized mainly into three areas: network coding, cooperative communication and

interference alignment. Next we elaborate on each of these areas before we get into our results.
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1.1 Network Coding

In the majority of the existing communication networks such as Internet, Peer-to-Peer

(P2P) networks, wireless ad hoc networks and sensor networks, data packets are typically

transmitted from the source node to a prescribed set of destination nodes by a method known

as “store and forward” in which data packets received by the intermediary nodes are stored and

then forwarded to the next node. In such a network, the information flow is upper bounded

by the value of the minimum cut between the source and the destination, which is known as

the Max-flow Min-cut theorem [4]. There are many algorithms to find the maximal flow in a

graph such as Ford-Fulkerson algorithm. However, in [1] Ahlswede et al. showed that simply

routing is not sufficient to achieve the max-flow value when there are multiple destinations. In

their seminal work, a new paradigm network coding was introduced to achieve the max-flow

value for single-source multicast (same information by a single source node is sent to multiple

destination nodes). The basic idea of network coding is to allow the intermediate nodes not

only simply route the information but instead using a linear or non-linear function, encode its

own information with its neighbors’ and then transmit this encoded information. It turns out

that the use of network coding can provably increase network throughput and robustness.

There is a perfect example given by Ahlswede et al. [1] that shows the benefits of network

coding in a very small network called the “butterfly network”. Fig. 1.1 shows this celebrated

example of a network for which coding at the node w is necessary in order to achieve the

maximum possible multicast transmission rate. In this thesis, we will combine network coding

with interference alignment to achieve higher rates and also will apply network coding in a

cooperative communication scenario to achieve higher diversity. Next we give the related work

and the evolution of the network coding literature.

Network coding was proposed in the work of Ahlswede et al. [1]. It was shown that if

we allow encoding at the intermediary nodes in a network, a source can transmit (multicast)

information at a rate approaching the smallest minimum cut between the source and any of the

receivers. Otherwise (when no coding at the intermediary nodes) they showed that it would be

impossible to achieve the minimum cut. The celebrated butterfly example Fig. 1.1 illustrates
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Figure 1.1 The celebrated butterfly network, an example of a network re-
quiring coding to achieve capacity (due to [1]). The network
consists of directed unit capacity links, and a source node s
multicasting the same information to two receivers y and z.
The presence of the bottleneck link from w to x necessitates
coding on that link in order to achieve the same multicast rate.

this fact. Later, Li et al. [5] showed that to achieve the capacity for single-source multicasting,

linear coding at the intermediate nodes would be sufficient. Another key paper in the area is

by Koetter and Médard [6] which presents an algebraic framework for linear network coding

extending previous results to not only arbitrary networks, but also prove the achievability of the

min-cut max-flow bound for networks with delay and cycles. Specifically, reference [6] gives the

algebraic characterization of the feasibility of a multicast problem by showing that validity of a

network coding solution is equivalent to the existence of a transfer matrix whose determinant

is nonzero. In [7], a distributed randomized network coding approach is introduced, and the

result in [6] is used to obtain a tighter upper bound on the required field size than the previous

bound. Various works have considered the characteristics of network codes needed for achieving

capacity on different types of networks and connections. Reference provides [8] graph-specific

upper bounds based on the number of clashes between flows. Dougherty et al. showed in [9]

that for non-multicast networks linear coding is insufficient in general.

In [10] they also showed that the existence of a solution in some alphabet does not imply
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the existence of a solution in larger field alphabets. Following that work, Li and Li [11] showed

that in undirected networks network coding does not increase throughput for a single unicast or

broadcast session, while any increase in throughput is bounded by a factor of two in the case of

a single multicast session. In [12] scalar coding solutions seem to be insufficient for some non-

multicast problems and instead vector coding solutions is proposed as a solution. Reference

[12] also provides necessary and sufficient conditions for an arbitrary set of connections to be

achievable on any network. Lehman et al. [13] provides a classification of the complexity of

network coding problems and shows that there exists an instance of special networks where

determining a scalar linear network code solution is an NP-hard problem. It has been shown

in [12] by construction that for some networks scalar linear network coding is not sufficient

over any finite alphabet. Similarly Riis [14], reported the insufficiency of scalar linear network

coding over binary alphabet field for an example acyclic directed network. It has been shown

in [15] that for every set of integer polynomial equations, there exists a directed acyclic network

which is scalar linear solvable over a finite field if and only if the set of polynomial equations

has a solution over the same finite field.

Researchers have extended the above results to a variety of areas including lossy networks

[16], [17], secrecy [18], error-correcting [18], content distribution [19], and distributed storage

[20]. Next we look at the development of network coding in wireless networks in more detail.

In the original papers of network coding [1], [5], it was proposed that intermediary nodes

would apply network coding at the network layer, hence links between nodes in the network

were assumed to be lossless. The immediate question was whether network coding could be

applied at the lower layers so that for example the lossy wireless medium could be taken into

consideration. Recently several studies suggested that network coding indeed can be performed

at the physical layer for further performance improvement [21], [22], [23]. In these papers,

physical layer network coding (PNC) was introduced, in which network coding is performed

by suitable modulation and demodulation at the relay. The main idea is to recognize that the

relay does not need to determine each message but only to compute the desired function of

transmitted messages. In [22], analog network coding (ANC) was introduced where the relay



www.manaraa.com

5

does not compute the desired function but simply amplifies and forwards incoming signals from

multiple links. Then the destination node can compute the desired function of messages. Later,

from an information theoretic point of view, Nazer et al. considered the problem of recovering

a function of sources over a multiple-access channel (MAC) [23]. In [23], an achievable rate was

provided and furthermore the importance of structured codes in these networks was explained.

In this thesis, we studied the network coded cooperation schemes for N source-destination pairs

assisted with M relays. We studied two different traffic network models: multicast and unicast.

The proposed schemes allow the relays to apply network coding on the data it has received

from its neighbors. We allow the relays to linearly combine the packets with coefficients either

deterministically pre-designed or drawn from a finite field randomly. We showed the advantage

over the existing schemes when the coding matrix is optimized the proposed schemes for any

network coding matrix. Specifically, it is capable of achieving the maximum diversity order at

the expense of a slightly reduced multiplexing rate. We derived the necessary and sufficient

conditions to achieve the maximum diversity order. When a relay selection is possible, we

show that a multiplicative effect on the diversity order is possible when enough rounds of relay

selection is performed.
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R

S D

Source

Relay

Destination

Figure 1.2 An example network that has a relay node cooperating with the
source node to transmit to the destination node.

1.2 Cooperative Communication

Basic idea of cooperative communications can be summarized as pooling the resources of

distributed nodes to improve the overall performance of a wireless network. It essentially

consists of a class of techniques which seek to improve reliability and throughput in wireless

systems. This cooperation can occur at different layers of the protocol including physical layer

and network layer.

In Fig. 1.2, an example of single-relay cooperative scenarios is shown. Here, a source

terminal S is transmitting a signal to a destination terminal D through its direct path (S−D).

Thanks to the wireless medium, other terminals such as the relay terminal R can overhear the

signal. Hence, if terminal R is in a cooperative mode, it can forward the source message to

the destination D. This way D receives two replicas of the signal: the original one transmitted

from S through the direct path (S − D) and the relayed one forwarded by R through the

relayed path (S − R − D). Now, these two received signals at the destination terminal can

be combined to achieve a better spatial diversity compared to the one achieved with a single

direct path. There is no restriction on how many relays can participate in this cooperation. In

this thesis, we consider multiple source and destination nodes and also multiple relay nodes.

There are various protocols for implementing cooperative communications at the relays.

Some of the most popular relaying protocols are Decode-and-Forward (DF) and Amplify-and-

Forward (AF), Compress-and-Forward (CF), and Coded Cooperation. In the Decode-and-
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Forward [24], [25], [26] relay decodes the sources message and re-encodes it before forwarding

it to the destination. Since the decoding can be erroneous, there is potential error propagation

which can degrade the system performance. To overcome this, tools like CRC can be used to

make sure decoding is correctly done at the relay and participate in the cooperation only in

this case.

In the Amplify-and-Forward [27], [25] relay nodes just amplify the signal from the source

terminal without performing any sort of decoding. The relay multiplies the sources signal as it

is received (noisy version) with certain gain under a certain constraint, e.g., power constraint,

and then transmits the resulting signal to the destination. Though it is a very practical protocol

thanks to its simplicity, it suffers from noise amplification especially in the low SNR regime.

In the Compress-and-Forward [27], [28] the key idea is that the relay quantizes and com-

presses the received signal and transmits the compressed version to the destination. Then, at

the destination the received message from the source and its quantized version from the relay

is combined. This protocol has better performance over DF when the relay is close to the

destination.

Finally, in the coded cooperations each source node partitions its codeword into two parts.

At the first time slot, each source transmits the first part of its codeword and tries to decode

the first part of the other source’s codeword [29], [30], [31]. If it can decode the codeword

successfully, it transmits the remaining part of its partners codeword. If it can not decode the

codeword successfully, the source switches to no-cooperation mode and transmits second part

of its own codeword. In this scheme, sources are assumed to be transmitting orthogonally.

Next, we give a short literature review on cooperative communications.

The research in the area of cooperative communications dates back to the pioneering work

of [32] in the 1970s, where the capacity of relay channels was studied for the problem of

information transmission over three terminals. Applications of this general idea have been

widely studied in the literature [33], [34], [35]. Reference [36] gives an excellent survey of

the field from a information-theory perspective. Many important aspects of relay networks

have been extensively studied. The diversity-multiplexing tradeoff of DF and AF relays has
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been investigated in [35], [25]. In addition, some distributed space-time codes designed for

relay networks have been proposed in [35], [25], [33], [26]. User cooperation which is the

generalization of relay networks to multiple sources has been investigated in [33], [34]. Recently,

the relaying method has already been incorporated into the WiMAX standard and is expected

to spread into many other commercial standards [37].

Relay selection was proposed in the cooperative diversity systems in [26]. The basic idea of

selection relaying is to pick a “best” relay according to some criterion like best channel quality,

distance, etc and improve performance with less resources compared to no selection case.

Later, the idea was extended to multi-source cooperative networks [38], and further to more

general fading channels [39]. In [40], a network-coded cooperation (NCC) with relay selection

was proposed. NCC was shown to outperform conventional cooperation (CC) schemes which

includes space-time coded protocols [35] and selection relaying [26]: It requires less bandwidth,

and yield similar or reduced system outage probability while achieving the same diversity order.

However, these results are based on an optimistic assumption that any destination node should

receive the packets that are not intended for it without any error so that the intended packet

can be recovered from the XOR’ed packet sent by the relay. When this assumption is removed

the scheme can no longer achieve the full diversity order of M + 1, where M is the number of

cooperating relays, but only a reduced diversity order of 2.

1.2.1 Background on DMT

Unlike the conventional multiple-input multiple-output channels, cooperative cooperation

allows users to simulate a virtual array of antennas in a distributed way. However, most of the

tools from the MIMO literature are still applicable to the cooperative communication scenarios.

Diversity-multiplexing tradeoff is one of the useful tools that can be borrowed from the MIMO

literature. As explained above, the underlying idea behind diversity is to average over multiple

path gains (fading coefficients) to increase the reliability. For example, in a system with N

transmit and M receive antennas, the maximal diversity gain that can be obtained is MN . But

if we use each transmit-receive antenna pair for communication of independent information in
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parallel, then we can efficiently increase the data rate of the system. It was shown in [41] that

in the high SNR regime the capacity of a channel with N transmit, M receive antennas and

i.i.d. Rayleigh faded gains between each antenna pair is given by:

C(SNR) = min(N,M) log SNR+O(1) bps.

The maximum multiplexing gain in this case is given by min(N,M). In [2], it was shown that

given a MIMO channel, although both gains can in fact be simultaneously obtained, there is a

fundamental tradeoff between each other. To capture this tradeoff, they considered a scheme

as a family of codes {C(SNR)} of block length l, one for each SNR level and take R(SNR)

(b/symbol) be the rate of the code. Then the diversity-multiplexing trade-off was formalized

as [Def.1, [2]]:

Definition 1. [2] A scheme C(SNR) is said to achieve spatial multiplexing gain r and diversity

gain d if the data rate

lim
SNR→∞

R(SNR)

logSNR
= r

and average error probability

lim
SNR→∞

log Pe(SNR)

log SNR
= −d

For each r, define d∗(r) to be the supremum of the diversity advantage achieved by any scheme.

Define

d∗max , d∗(0)

r∗max , sup {r : d∗(r) > 0}

which are respectively the maximal diversity gain and the maximal spatial multiplexing gain in

the channel.

From the given definition, one can interpret the spatial multiplexing gain to be the fraction

of the capacity at high SNR; and the diversity gain as the reliability at high SNR.
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1.3 Interference Alignment

Interference alignment is a new technique combining precoding at the transmitters to align

the interference at the receivers and nulling out the interference at the receivers. This way,

interference alignment maximizes interference free space for the desired signal. It was shown

in [3] that all the interference can be concentrated roughly into one half of the signal space

at each receiver, leaving the other half available to the desired signal and free of interference.

Next, we give a quick review of the literature on interference alignment.

In [42], Maddah- Ali, Motahari et al. introduced this concept and showed its capability in

achieving the full Degrees-Of-Freedom (DOF) for certain classes of two-user X channels. In

[3], Cadamba and Jafar showed that in a K user setup, it is possible for each user to achieve

half of the rate that is possible in the absence of interference. Later, in [43], it is shown that

the same result can be achieved using a simple approach based on a particular pairing of the

channel matrices. The assumption of varying channel gains, particularly noting that all the

gains should be known at the transmitters sides, is unrealistic which limits the application of

these important theoretical results in practice. In [44], Sridharan et al. showed that the DOF

of a class of 3-user GICs with fixed channel gains can be greater than one. This result was

obtained using layered lattice codes along with successive decoding at the receiver. In [45], it

was shown that interference can be aligned using properties of rational and irrational numbers

and their relations using the results from the field of Diophantine approximation in Number

Theory.

The result of [3] is extended to J destination nodes with arbitrary messages in [46]. Also

recently, authors in [47, 48] proposed to use the interference alignment technique in the wired

networks. In a three source three destination node setup, they were able to show that each

user can achieve a rate of one half when the min-cut is one and the network transfer functions

satisfy certain conditions. In this thesis, we extend the idea of using interference alignment

in wired networks to more general networks. We consider networks with K source nodes

and J destination nodes with arbitrary message demands. We first consider a simple network

consisting of three source nodes and four destination nodes and show that each user can achieve
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a rate of one half. Then we give the result for the general case which states that a sum rate of

all the demanded source messages plus the biggest interferer’s rate has to be smaller than the

min-cut between the source nodes whose messages are demanded and the destination node.

1.4 Contributions

Here we summarize the contributions of this thesis. In Chapter 2, we study the effect of the

delay on the average capacity (min-cut capacity) of wireless relay networks. We define delay

as the number of independent channel uses and study the effect of it on the average capacity of

the network. For different types of networks, we give closed-form expressions of the capacity as

a function of the delay, under the assumption of large delay. The network we consider consists

of one source, one destination, and multiple relays where all the relays are connected to each

other. We come to an interesting conclusion that the average capacity of this network and

the same network but in which the relays are not connected to each other are asymptotically

same.

In Chapter 3, we study the network coded cooperation schemes for N source-destination

pairs assisted with M relays for two different traffic network models: multicast and unicast.

The proposed schemes allow the relays to apply network coding on the data it has received

from its neighbors. We propose two ways for the application of network coding at the relays,

the linear combination coefficients are either deterministically pre-designed or drawn from

a finite field randomly. We derive the necessary and sufficient conditions for achieving the

maximum diversity order. For both of these proposed schemes, we establish the diversity-

multiplexing tradeoff performance, which turns out to be a function of a special property of

the network coding matrix. Then we optimize the scheme according to this property of the

network coding matrix and achieve maximum available diversity in the system. We show that

when the parity-check matrix for a (N + M,M,N + 1) systematic MDS code is used as the

network coding matrix, the maximum diversity is achieved. We present two ways to construct

the network coding matrix: using either the Cauchy matrices or the Vandermonde matrices.

Both constructions guarantee maximum diversity order. When a relay selection is possible, we
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show that a multiplicative effect on the diversity order is possible when enough rounds of relay

selection is performed.

In Chapter 4, we first consider a simple network consisting of three source nodes and four

destination nodes and show that each user can achieve a rate of one half. Then we extend

the result for a more general network consisting of K source nodes and J destination nodes.

We show that when the min-cut between each source-destination pair is one, it is possible to

achieve a sum rate that is arbitrarily close to the min-cut between the source nodes whose

messages are demanded and the destination node where the sum rate is the summation of all

the demanded source message rates plus the biggest interferer’s rate.
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CHAPTER 2. Effects of Delay and Links between Relays on the Min-Cut

Capacity in a Wireless Relay Network

2.1 Introduction

Consider a source node in a graph that needs to transfer some information to a destination

node, with the help of some relay nodes. The information flow in this case is upper bounded

by the value of the minimum cut between the source and the destination, which is known as

the Max-flow Min-cut theorem [4]. There are many algorithms to find the maximal flow in a

graph such as Ford-Fulkerson algorithm. In our work, we investigate the effect of delay on the

min-cut capacity of wireless relay networks.

Being an important factor in the performance of the networks, delay has been previously

studied in the literature. Several different definitions of delay have been proposed: delay as

the waiting time in the buffer, delay as the propagation time from the communication channel

or delay as the time spent for processing information like encoding or decoding, etc. The delay

throughput relationship has been treated from the network layer perspective in e.g., [49]. The

relationship has also been studied from the physical layer perspective. Information-theoretic

results include [50, 51, 52, 53]. In [50], a notion of delay-limited capacity has been introduced.

In [51], the power-delay trade-off and buffer control policies are examined for time varying

channels. In [52], how the delay scales with the size of the ad hoc networks has been studied

as a continuation of the work in [54] which studied the problem how the throughput scales

with the size of the networks. Delay has been studied in network coding literature too. In

[55], the delay performance of network coding with or without channel side information has

been compared to conventional scheduling methods. In [56], plain routing is compared against

network coding in terms of delay, throughput trade-offs. In [57], a delay sensitive scheduling
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Figure 2.1 (a) Line network, (b) diamond network, and (c) the network
with relay links

algorithm based on only XOR operation is proposed.

In this thesis, we define delay as the number of independent channel uses (number of

different channel realizations) and we investigate the effect of delay on the average capacity

(min-cut capacity) of wireless relay networks. The nodes in the network are considered to be

connected via Rayleigh flat fading channels. The motivation is that in order to exploit the

averaging effect of multiple channel realizations, buffering and coding across multiple channel

realizations is needed. For certain types of networks closed-form expressions of the capacity as

a function of delay are derived.

The type of network that we study is a network where there is only one source, one destina-

tion andK relays where all the relays are connected to each other through wireless links subject

to Rayleigh flat-fading. One interesting result is that the average capacity of this network and

the same network in which the relays are not connected to each other are not very different. We

give some upper bound on the ratio of the capacities of these two networks. The contributions

of this chapter are i) a study of the delay-throughput relationship, and ii) an analysis of the

contribution of the links among relays on the average capacity of the transmission from source

node to the destination node.

2.2 System Model

We consider a network consisting of single source, single destination, and K relays. The

source node is trying to convey information to the destination with the help of the relays.

Relays are only one hop away from both the source and the destination node.
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2.2.1 Channel Model

The channel model used in this chapter is a time-varying Rayleigh flat fading model. We

assume that the channel coherence interval Tc is long compared to the symbol duration Ts, such

that Tc/Ts ≫ 1. For each channel realization hi between two nodes, a reliable transmission

rate of R(hi) = log(1 + ρ|hi|2) can be achieved, where ρ is the signal to noise ratio (SNR).

Since hi is a random variable, the reliable transmit rate R(hi) is also a random variable.

If a transmission interval of DTc can be used, so that D independent channel fading coef-

ficients can be experienced by the transmission, then an average transmission rate of

Z(D) =
1

D

D
∑

i=1

R(hi) =
1

D

D
∑

i=1

log(1 + ρ|hi|2) (2.1)

can be achieved.

The parameter D plays the role of delay. The benefit of using a larger D, however, is that

the channel appears to be less varying — in the limit of infinite D, the reliable transmission

rate R(D) converges to the ergodic capacity of the fading channel. We assume that all the

links between the nodes are i.i.d. . At each relay node, information symbols of duration DTc

seconds are buffered. Our goal is to quantify how D affects the average minimum-cut capacity

of the relay network.

2.3 Main Results

We will consider first a simple case where there is no links among the relays. Then we will

consider the case with links among relays.

2.3.1 No links among relays

Let us consider first a simple linear network as shown in Fig. 2.1. There is no direct link

from the source to the destination node, and all communication is performed through the relay

node. In order to find the expected value of the min-cut we first need to find the probability

density function (PDF) of the random variable corresponding to the min-cut value.
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Using the moment generating function (MGF) of the random variable U = log(1 + ρ|hi|2),

the PDF of Z can be found as:

fz(z) =
1

2πj

∫ ∞

−∞
(

s/D
∑

i=0

i!λi)De−zsds (2.2)

where λ is the mean of the exponentially distributed |hi|2. Using (2.2), we can write the PDF

for W = min(C1, C2) = min(Z1, Z2) as:

fw(w) = 2fz(w)[1 − Fz(w)] (2.3)

where Fz(w) is the cumulative distribution function (CDF) of the random variable Z. Hence

the expected value of W is given as:

E[W ] =

∫ ∞

0
2wfz(w)[1 − Fz(w)]dw (2.4)

The integral expression in (2.4) makes it difficult to be analyzed. Therefore, since Z is a

sum of multiple independent random variables, we can approximate Z with a Gaussian random

variable by Central Limit Theorem. For this we need the expected value and the variance of

Z. The expected value and the variance of Z can be found to be:

E[Z] = exp(1/(ρλ))Ei(1/(ρλ)) (2.5)

V ar[Z] =
f(ρ, λ)

D

f(ρ, λ) = E[log(1 + ρ|hi|2)2]− E2[Z]

Let X1, X2 be two independent Gaussian random variables with distribution N(µ, σ2),

then the expected value of the minimum of them (Y = min(X1,X2)) is given by:

E[Y ] = E[min(X1,X2)] = µ− σ√
π

(2.6)

Proposition 1. The expected value of the min-cut for the line network given in Fig. 2.1(a) is

given by

E[W ] = E[min(Z1, Z2)] = E[Z]− σZ√
πD

(2.7)
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Figure 2.2 extended diamond network with K relays

As can be seen from (2.7) the delay decreases the expected value of the capacity in a

square-root fashion and for the large values of D the effect of delay becomes negligible. In

this case, the capacity simply converges to the mean value of Z, since by the law of large of

numbers we have,

1

D

D
∑

i=1

log(1 + |hi|2ρ) → E[log(1 + |h|2ρ)] = E[Z] (2.8)

Hence for large D we have,

E[W ] = E[min(Z1, Z2)] (2.9)

= E[min(E[Z1], E[Z2])] = E[Z] (2.10)

Proposition 2. The expected value of the min-cut for the K-relay network with i.i.d. links

given in Fig. 2.2 (without the relay links) is given by

E[W ] = E[min
i
(Ci)] = K

(

E[Z]− σZ√
πD

)

(2.11)

Before proving the theorem we give two lemmas which will be used to simplify the proof.

Lemma 1. The min-cut capacity for the diamond network (K=2 case) is given as

W = min
i
{Ci} = min{ZSR1

, ZR1D}+

min{ZSR2
, ZR2D} (2.12)
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Proof. The cut capacities for the diamond network for K=2 case can be computed as [58],

C1 = ZSR1
+ ZSR2

;C2 = ZR1D + ZR2D;

C3 = ZSR1
+ ZR2D;C4 = ZSR2

+ ZR1D; (2.13)

Then,

W = min
i
{Ci} = min{ZSR1

+ ZSR2
,

ZR1D + ZR2D, ZSR1
+ ZR2D, ZSR2

+ ZR1D}

= min{min{ZSR1
+ ZSR2

, ZSR1
+ ZR2D},

min{ZR1D + ZR2D, ZSR2
+ ZR1D}}

= min{ZSR1
+min{ZSR2

, ZR2D},

ZR1D +min{ZSR2
, ZR2D}}

= min{ZSR2
, ZR2D}+min{ZSR1

, ZR1D}

Lemma 2. The min-cut capacity for the K-relay network without the relay links is given as

W = min
i
{Ci} = min{ZSR1

, ZR1D}+

min{ZSR2
, ZR2D}+ · · ·+min{ZSRK , ZRKD} (2.14)

We skip the proof of Lemma 2 because it involves the same arguments used in the proof of

Lemma 1.

Now we can prove the Proposition 2.

Proof. All the min terms in the Lemma 2 involves i.i.d. random variables, hence we can write

the expected value of W as a summation of the individual expectation of each of the min

terms. Using Lemma 2 and Proposition 1 we have the desired result.
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Figure 2.3 extended network with K relays with links between the relays

2.3.2 Links among Relays

The next intuitive step is to look at a network with all the relays connected to each other,

unlike the diamond network. The presence of relay links prevents us from obtaining a decom-

position similar to such as that in Lemma 2.

To make the analysis tractable, we first make a simplifying assumption. Assume that the

relay links have infinite capacity. This will make the relay nodes act together as a virtual

unified node. With this assumption we are ready to give the main result of this section.

Proposition 3. The ratio of the min-cut capacities of the networks with i.i.d. links given in

Fig. 2.2 and Fig. 2.3 (without and with the relay links, respectively) is given by

E[Wd]

E[Wrl]
K→∞−→ 1− 1

E[Z]

σZ√
πD

(2.15)

where K is the number of relays, E[Z] average capacity of the point to point channel between any

two nodes, E[Wd] and E[Wrl] are the expected value of the min-cut capacities of the networks

without and with the relay links, respectively.

Proof. Let CS and CD denote the cut capacities around the source and the destination respec-

tively:

CS =

K
∑

i=1

ZSRi
, CD =

K
∑

i=1

ZRiD (2.16)
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But, since we have an infinite capacity assumption for the links between the relays (ZRiRj
=

∞,∀i, j ∈ {1, 2 · · ·K}), the min-cut for this network can be written as

Wrl = min
i
{Ci} = min{CS , CD}. (2.17)

Now, since all the terms inside the summation in (2.16) are i.i.d. with distributionN(E[Z],
σ2
Z

D )

(using (2.5)) for both CS and CD, their distribution is N(KE[Z],K
σ2
Z

D )). Therefore using (2.6),

we have

E[Wrl] = KE[Z]−
√
K

√

σZ
πD

. (2.18)

Using Proposition 2 and taking the limit we get the desired result (2.15).

This asymptotic upper bound on the ratio of the min-cuts of the two networks tells us

that they are converging to the same value as K → ∞ and ρ → ∞ which suggests that the

links between the relays do not have a major impact on the capacity of the source-destination

transmission, when the number of relays is large.
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2.4 Simulations

In this section we compare Monte-Carlo simulation results with the theoretical results.

We considered the case K = 2, and compared the two networks with and without relay

links, namely between the last two types of networks in Fig. 2.1. All the links are i.i.d. The

parameters are chosen to be ρ = 1 and λ = 1. As can be seen from Fig. 2.4, both of the

average capacities converge to two times of the average capacity of a link E[Z], which was

expected from law of large numbers. Fig. 2.5 shows the difference between the Monte-Carlo

and theoretical results. The difference converges to zero as D increases (Gaussian assumption

justified), which verifies our theoretical results. Fig. 2.6 shows the difference between the two

networks with and without links among relays. The difference goes to zero as D increases,

which verifies Proposition 3.

2.5 Conclusions

In this chapter we studied the effect of the delay on the average capacity (min-cut capacity)

of wireless relay networks. We defined delay as the number of independent channel uses and

study the effect of it on the average capacity of the network. For different types of networks,

we were able to find closed-form expressions of the capacity as a function of the delay, under

the assumption of large delay. The network type we consider was a network where there is one

source, one destination, and multiple relays where all the relays are connected to each other.

We arrived at an interesting result that the average capacity of this network and the same

network but in which the relays are not connected to each other are asymptotically same.

Future studies include extension of the analysis to arbitrary networks and study the effect

of delay on different aspects of the wireless networks other than the capacity such as outage

probability. Another interesting topic is the matching between the source information symbols

arrival statistics and channel variation statistics for this model.
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CHAPTER 3. Wireless Network Code Design and Performance Analysis

Using Diversity-Multiplexing Tradeoff

3.1 Introduction

Channel fading is one significant cause of performance degradation in wireless networks.

In order to combat fading, diversity techniques that operate in time, frequency or space are

commonly employed. The basic idea is to send the signals that carry same information through

different paths, allowing the receiver to obtain multiple independently faded replicas of the data

symbols. Cooperative diversity tries to exploit spatial diversity using a collection of distributed

antennas belonging to different terminals, hence creating a virtual array.

In [1] Ahlswede et al. introduced network coding to achieve the max-flow rate for single-

source multicast that could be impossible to achieve by simply routing the data. Since then,

network coding has been recognized as a useful technique in increasing the throughput of a

wired/wireless network. The basic idea of network coding is that an intermediate node does not

simply route the information but instead combines several input packets from its neighbors with

its own packets and then forwards it to the next hop. However, since network coding is devised

at the network layer, error-free communication from the physical and medium-access layer is

usually assumed, which is a simplifying assumption for wireless communications. Efforts have

also been made to apply network coding to the physical layer, e.g. in [21, 59, 60]. Studies have

been conducted to determine whether network coding provides any advantages over existing

cooperative communication techniques [61, 40, 62, 63, 64, 65, 66].

Relay selection was proposed in the cooperative diversity systems in [26]. Later, the idea

was extended to multi-source cooperative networks [38], and further to more general fading

channels [39]. In [40], a network-coded cooperation (NCC) with relay selection was proposed.
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NCC was shown to outperform conventional cooperation (CC) schemes which includes space-

time coded protocols [35] and selection relaying [26]: It requires less bandwidth, and yield

similar or reduced system outage probability while achieving the same diversity order. However,

these results are based on an optimistic assumption that any destination node should receive

the packets that are not intended for it without any error so that the intended packet can be

recovered from the XOR’ed packet sent by the relay. When this assumption is removed the

scheme can no longer achieve the full diversity order of M + 1, where M is the number of

cooperating relays, but only a reduced diversity order of 2.

To improve the system diversity performance, in this chapter we propose network coded

cooperation schemes for N source-destination pairs assisted with M relays. The proposed

scheme allows the relays to apply network coding on the data they have received using random

or pre-designed coefficients. Our main contributions in this chapter are as follows:

(i) We derive the DMT performance of the proposed scheme under multicast and unicast

network models, and show that it is superior to previous NCC and CC schemes.

(ii) We show that a maximum diversity order M + 1 is achievable with slightly reduced

multiplexing rate.

(iii) We design the maximum diversity coding matrices, which is related to the conventional

MDS error-control codes. We give two constructions for such matrices: using the Cauchy

matrices and the Vandermonde matrices.

(iv) We also analyze a selective relaying scheme, which possesses superior diversity perfor-

mance under certain conditions.

The rest of the chapter is organized as follows. Sec. 3.2 discusses the system model and

a description of the proposed scheme. In Sec. 3.3.1, performance analysis is established using

DMT. Sec. 3.4 presents our network code design. In Sec. 3.5, we discuss unicast, random

network coding, and selection relaying. In Sec. 3.6, the performance of the proposed scheme

is compared in terms of DMT and average outage probability with the existing schemes in the

literature. Sec. 3.7 concludes the chapter.
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Figure 3.1 System model: N source-destination pairs and M relays

3.2 System Model

3.2.1 General System Description

The network studied in the chapter is composed of N source-destination pairs denoted as

(s1, d1), . . . , (sN , dN ), and M relays denoted as r1, . . . , rM in a single-cell where all the nodes

can hear the transmissions of each other as shown in Fig. 3.1. We assume that each packet

is composed of L bits: bi = [bi,1, bi,2, . . . , bi,L]. We divide bi into smaller blocks of equal

length l and represent the kth block [bi,kl+1, bi,kl+2, . . . , bi,(k+1)l], k ∈ {1, . . . ,K} a finite-field

element θi,k ∈ Fq where q = 2l and K = L/l. Therefore, each packet is represented as a

K-tuple Θi = [θi,1, θi,2, . . . , θi,K ] ∈ F
1×K
q ; see e.g., [67], [68] for representations of finite-field

elements. Dividing each packet into small blocks enables us to work with a smaller field size

which in return significantly reduces the complexity of the arithmetic operations. This is to

be contrasted to the scheme in [6] where the field size is taken to be q = 2L. We will give

a lower bound on the field size in Sec. 3.4. We consider two different transmission scenarios.

In the first scenario, each source node si is trying to transmit the data packet Θi to all the

destinations di, i = 1, . . . , N which is known as the multicast scenario. In the second scenario,

each source node si is trying to transmit the data packet Θi to only destination di and we will

refer to this scenario as the unicast scenario. All the nodes are assumed to be equipped with

half-duplex (i.e. cannot transmit and receive at the same time) single-antennas. Each data

packet Θi is coded and modulated, and transmitted in T time slots.
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The channel between any pair of nodes is assumed to be frequency flat fading with additive

white Gaussian noise (AWGN). Let xi ∈ C denote the transmitted symbols from node i and

yj ∈ C the received symbols at node j. The additive noise zi ∼ CN(0, 1) has independent

and identically distributed (i.i.d.) circularly symmetric entries. Let hi,j ∈ C denote the

instantaneous channel realization. We assume that the channel coefficient hi,j remains constant

during the transmission time of a packet. Then, the channel within one block can be written

as

yj(t) =
√
ρhi,jxi(t) + zi(t), t = 1, 2, . . . , T, (3.1)

where ρ is the average received signal to noise ratio (SNR) at the destination. All the transmis-

sions are made with equal power. In the above equation, the transmitter could be any of the

sources or relays, the receiver could be any of the relays or destinations, as long as the trans-

mitter and receiver are different (i.e., not the same relay). The channel coefficient hi,j between

any two nodes is modeled as i.i.d. with zero-mean, circularly symmetric complex Gaussian

random variables with common variance 1/β. Therefore, |hi,j |2 is exponentially distributed

with parameter β ∀i, j .

A total of NL bits are transmitted by all sources in (N +M)T channel uses, therefore the

system rate is R = NL/[(N +M)T ] bits per channel use (BPCU). The transmission rate R0

for each packet transmission is identical, equal to R0 = L/T = R(N +M)/N BPCU.

The instantaneous mutual information of the channel model in (3.1) with Gaussian input

is:

I(Xi;Yj) = log(1 + |hi,j |2ρ), (3.2)

where Xi and Yj denote the transmitted symbol by node i and received symbol by node j.

We assume that powerful enough channel codes can be applied within each packet such that

if I(Xi;Yj) > R0, the packet can be decoded correctly. In case errors occur, we assume they

can be detected. This can be realized through cyclic redundancy check (CRC) code or other

parity check codes. When I(Xi;Yj) ≤ R0, we say that the channel hi,j is in outage. Otherwise,

we say that the channel hi,j is operational. Define τ = [2[R(N+M)]/N − 1]/ρ. Since |hi,j|2 is
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si transmits Θi to di

ri overhears Θi
ri relays Θi to di

r relays Θ1 ⊕ · · · ⊕ ΘN

to d1, . . . , dN

r and d. overhears Θi

si transmits Θi to di

r. and d. overhears Θi

r1 relays
∑

k α1,kΘk rM relays
∑

k αM,kΘksi transmits Θi to di

to d1, . . . , dN

(a)

(b)

(c)

time=2i − 1 time=2i i = 1, . . . , N

time=i, i = 1, . . . , N time=N + 1

time=i, i = 1, . . . , N time=N + 1 time=N + M

. . .. . .

. . .

. . . . . . . . .

. . .

2N time slots

N + 1 time slots

N + M time slots

Figure 3.2 Time-division allocation for the different schemes compared: (a)
CC (b) NCC (c) DNCC and RNCC

exponentially distributed, the outage probability for the channel in (3.1) is given by:

P0 = Pr(I(Xi;Yj) < R0) = Pr(|hi,j|2 < τ)

= 1− exp(−βτ) ∼= βτ, (3.3)

where we write a(τ) ∼= b(τ) if limτ→0[a(τ)/b(τ)] = 1.

3.2.2 Network Coded Cooperation

Our transmission scheme consists of two stages; see Fig. 3.2. In the first stage, direct

transmissions from the sources to the destinations take place in N orthogonal time slots.

Thanks to the broadcast nature of the wireless medium, all the destinations and the relays

overhear the transmissions. At the end of the first stage, each relay tries to decode all N

packets. Here one of the two strategies is possible:

1. Strategy A: If a relay can successfully decode all the packets, then it participates in

the second stage. Otherwise, it remains silent. In the second stage, the participating

relays perform network coding. Specifically, relay i will transmit the linear combination

∑N
k=1 αikΘk.
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2. Strategy B: If a relay can successfully decode at least one packet, then it participates in

the second stage. Specifically, if relay i was able to decode the packets correctly from the

sources in the set Si where Si ⊂ {1, . . . , N}, then it will transmit the linear combination

∑

kǫSi
αi,kΘk.

Unless otherwise specified, we study the first case when the Strategy A is used until Sec. 3.5.

Strategy B will be discussed in Sec. 3.5.

3.2.3 Deterministic and Random Network Coding

We will consider two network coding schemes for the user cooperation: random coding

and deterministic coding. In the random coding approach, which we will refer to as Random

Network Coded Cooperation (RNCC), relay ri draws αij randomly from the finite field Fq.

After the random coefficients are drawn, a new packet is created by making a linear combi-

nation of the source data packets using the αij’s. In the deterministic approach which will be

referred to as Deterministic Network Coded Cooperation (DNCC), the coefficients αij ’s are

predetermined and they are designed in a way to maximize the probability that the received

linear combinations are actually decodable at the destination. We will discuss the problem of

how to choose these predetermined coefficients in detail in Sec. 3.4.

In order to express the overall transmitted signal, we define the following matrix:

A :=













1 . . . 0 α1,1 . . . αM,1

...
. . .

...
... .

...

0 . . . 1 α1,N . . . αM,N













T

(3.4)

where (·)T denotes transpose. Also define the N ×K finite field vector corresponding to the

original source packets as Θ = [ΘT
1 ,Θ

T
2 , . . . ,Θ

T
N ]T . Using matrices A and Θ, we can express

the potential transmitted signals by all the N sources and M relays, in that order, as Π = AΘ

where Π ∈ F
(N+M)×K
q . Note that Π represents the potential transmitted signals, since due to

severe fading some of the channels might be in outage and therefore only a subset of packets

can be successfully decoded by some relays. Under Strategy A, such relays will not participate

in the second stage and the rows of A corresponding to these relays can be considered to
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be deleted. Under Strategy B, however, only the coefficients in A that correspond to the

unsuccessful packets would be zero, as opposed to a whole row being deleted. Note that, from

the destination di’s perspective, some of the channels might also be in outage. We denote

the corresponding submatrix of A for destination di by Ai which satisfies Πi = AiΘ where Πi

denotes all correctly decoded packets at destination di.

3.3 Performance Analysis

3.3.1 Diversity-Multiplexing Tradeoff

As mentioned in the introduction, we will investigate the performance of the proposed

scheme via DMT. DMT is accepted as a useful performance analysis tool in cooperative systems

[40, 26]. For completeness, we give the formal definitions as in [2]. Let P i
e(ρ) denote packet

error probability of user i at SNR ρ. Define Pe = mini P
i
e , i = 1, . . . , N , then a scheme is said to

achieve spatial multiplexing gain r and diversity gain d if the data rate is limρ→∞R(ρ)/ log(ρ) =

r, and the minimum error probability satisfies limρ→∞ log(Pe(ρ))/ log(ρ) = −d.

3.3.2 Main Result

Next we define a new parameter which plays a key role in the derivation of the outage

probability and hence the achieved diversity order. For any integer i ∈ [1,min(m,n)], we

define the Γ-rank, Γi(C), of a m× n matrix C as an integer γ such that 1) any collection of γ

rows of C is at least rank i, and 2) there exists a collection of γ − 1 rows of C that has rank

i− 1. Next, we derive the DMT of the system as a function of ΓN (A).

Theorem 1. The DMT of DNCC with N source-destination pairs and M intermediate relay

nodes which choose their linear combination coefficients from the matrix A for multicast using

Strategy A is given by:

d(r) = (N +M − (ΓN (A) − 1))

[

1− N +M

N
r

]

, (3.5)

where r ∈
(

0, N
N+M

)

.
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Proof. 3.3.2.1 Multicast

In the multicast problem, the necessary and sufficient condition for destination di to recover

Θi is rank(Ai) = N . To analyze the outage probability, we define the following events:

Ei , {rank(Ai) < N}, and Eup
i , {Ai has at most ΓN (A)−1 rows}. Notice that, Ei ⊂ Eup

i by

the first condition in the definition of Γ-rank. By the second condition in the definition of Γ-

rank, there exist a collection of rows of A that are rank N−1. Let Ãi denote a (ΓN (A)−1)×N

submatrix of A that consists of such rows. Let Fm denote the event that m relays fail to receive

all the Θi’s correctly. Define Elow
i , {F0 ∩ {Ai = Ãi}}. It follows that Elow

i ⊂ Ei. Notice

that the probability that any relay can successfully decode all N packets in the first stage is

P (S) =
∏N

i=1 Pr(Isir(X;Y ) > R0) =
∏N

i=1 exp(−βτ) = exp(−Nβτ). As a result,

P (Fm) =

(

M

m

)

P (S)M−m(1− P (S))m. (3.6)

Having N direct transmission from the sources and M −m transmissions from the relays,

each destination can potentially receive and decode N +M −m packets. Let E(N +M −m, l)

denote the event that l out of N +M −m channels were operational:

P (E(N +M −m, l)) =

(

N +M −m

l

)

· PN+M−m−l
0 (1− P0)

l (3.7)

where P0 is given by (3.3). Since Elow
i ⊂ Ei ⊂ Eup

i , using (3.6) and (3.7) we have the following

upper and lower bounds:

P (Ei) ≤ P (Eup
i )

=
M
∑

m=0

P (Fm) ·
ΓN (A)−1
∑

l=0

P (E(N +M −m, l)), (3.8)

P (Ei) ≥ P (Elow
i )

= P (F0)P
N+M−(ΓN (A)−1)
0 (1− P0)

ΓN (A)−1. (3.9)

In (3.8), the first summation stands for the probability of the event that m of the relays fail

to receive all Θi’s correctly, leaving us with only M −m relays which will participate in the

second stage. In total N +M −m transmissions will be made. The destination di may not be

able to recover all Θi’s, if only ΓN (A)− 1 or less number of transmissions are successful.
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Notice that, as ρ → ∞, τ → 0. We need to find the following limit:

lim
τ→0

P (Ei)

τN+M−(ΓN (A)−1)
. (3.10)

We consider the individual terms in the summations one-by-one and find the term with the

smallest order of τ . Observe that limτ→0 (1− P (S)) = Nβ and P (Fm) ∼= Kmτm where Km is:

lim
τ→0

P (Fm)

τm
=

(

M

m

)

(Nβ)m. (3.11)

Similarly, P (E(k, l)) ∼= Kk,lτ
k−l where Kk,l =

(

k
l

)

βk−l. The smallest order τ term happens

when l is equal to ΓN (A)− 1. Hence, we have:

lim
τ→0

P (Fm)

τm
· P (E(N +M −m, l))

τN+M−m−(ΓN (A)−1)
= KmKN+M−m,ΓN (A)−1 , Kup,

and

P (Eup
i ) ∼= Kupτ

N+M−(ΓN (A)−1) = Kup

(

2
N+M

N
R − 1

ρ

)N+M−(ΓN (A)−1)

. (3.12)

Similarly, P (Elow
i ) ∼= Klowτ

N+M−(ΓN (A)−1), where Klow = βN+M−(ΓN (A)−1). Now, choosing

the fixed rate to be R = r log ρ and substituting into (3.12), we obtain:

P (Ei) ∼= Kρ(
N+M

N
r−1)(N+M−(ΓN (A)−1)) (3.13)

where Klow ≤ K ≤ Kup, which is the desired result.

3.3.2.2 Unicast

In unicast we have a different problem: given the received packets Yi at destination di, we

would like to recover only Θi from the set of linear equations Yi = AiΘ. The error can only

happen when the direct link is in outage. Notice that this implies that Ai does not contain

ei (the i’th row of the N ×N identity matrix IN×N ). In this case, a necessary and sufficient

condition for Θi to be recoverable is that ei ∈ span(Ai), where span(Ai) is the row-space of Ai.

Here, we make another rank definition that will be useful for the proof of the unicast scenario.

We define the Λi-rank, Λi(C) of a m× n matrix C as an integer λ such that 1) any collection

of λ rows of C spans a space that contains ei but 2) there exists a collection of λ− 1 rows of C
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which does not span a space that contains ei. The DMT of the system as a function of Λi(A)

is given by the following lemma.

Lemma 3. DMT of DNCC for unicast for the ith destination is

di (r) = (N +M − (Λi(A)− 1))

[

1− N +M

N
r

]

, (3.14)

where r ∈
(

0, N
N+M

)

.

Proof. See the Appendix A.

Notice that from the definition of Γ-rank, we have ΓN (A) = maxi Λi(A). Since the error

probability Pe is defined to be the minimum of individual error probabilities, we have d(r) =

mini di(r). After substituting di(r) in (3.14), we obtain the desired result in (3.5).

Corollary 1. The maximum diversity is achieved if and only if ΓN (A) = N .

Proof. The result follows immediately from (3.5).

3.4 Design of the Linear Network Coding Matrix

In this section, we try to design a network coding matrix A that can yield the maximum

diversity order. Notice that, by definition we have ΓN (A) ≥ N . Therefore, it is clear from

Corollary 1 that we need to pick an A that satisfies ΓN (A) = N . Before going into the

discussion on the design of the matrix A, we would like to give another important rank definition

that will be used in the design of A.

The row Kruskal-rank [69, 70] of A, denoted by κ(A), is the number r such that every set

of r rows of A is linearly independent, but there exist one set of r + 1 rows that are linearly

dependent.

Lemma 4. κ(A) = N ⇔ ΓN (A) = N .

Proof. We prove ΓN (A) = N ⇒ κ(A) = N ; the other case is straightforward. When ΓN (A) =

N , from the definition of Γ-rank any collection of N rows of A is at least rank N . But since
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rank(A) ≤ N , we have the first condition for the Kruskal-rank. Also since rank(A) ≤ N , any

N + 1 rows will be linearly dependent.

The minimum Hamming distance dmin between any two codewords for a (n, k) error-

correcting code is upper bounded by the Singleton bound as dmin ≤ n − k + 1. The codes

that achieve this bound are called MDS codes [71]. The following result relates the column

Kruskal-rank of the parity-check matrix H of a linear block code to its minimum distance dmin:

dmin = κ(H)+1. This follows from a theorem in [71, p. 318], which states that a code is MDS

if and only if (iff) every n− k columns of its parity check matrix H are linearly independent.

The transpose HT of the parity check matrix of a systematic (N+M,M,N +1) MDS code

can be used as an encoding matrix A for our DNCC scheme to minimize the total number of

packets necessary at the destinations for decoding the source packets. If such an A is used,

then each destination needs and only needs N packets (from the sources and relays) for correct

decoding. Note that depending on the sizes N and M , finding a (N +M,M,N +1) MDS code

may or may not be possible in a given finite field Fq [71, 72].

3.4.1 Network Code Designs from Reed-Solomon Codes

Reed-Solomon (RS) Codes are MDS codes. There are two ways of constructing an RS

Code: either using the Vandermonde matrices [73] or using the Cauchy matrices [74, Sec. 4.3].

Because of the special structure of A in (3.4), we will be working on systematic RS codes.

3.4.1.1 Construction based on Cauchy Matrices

The systematic generator matrix for the RS(n, k) code has the form G = [I|C] where I is

the identity matrix of order k and C is a k× (n−k) matrix [74] and G satisfies κ(GT ) = n−k.

C is known as Cauchy matrix and is given by:

Ci,j =
uivj

xi + yj
, 0 ≥ i ≥ k − 1, 0 ≥ j ≥ n− k − 1. (3.15)
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where ui, vj , xi and yj are elements of GF (2m) and are defined as:

xi = βn−1−i, 0 ≥ i ≥ k − 1,

yj = βn−1−k−j, 0 ≥ j ≥ n− k − 1,

ui =
1

∏

0≥i≥k−1, l 6=i (β
n−1−i − βn−1−l)

, 0 ≥ i ≥ k − 1,

vj =
∏

0≥l≥k−1

(βn−1−k−j − βn−1−l), 0 ≥ j ≥ n− k − 1,

where β is the primitive element for Fq. Therefore, choosing n = N + M and k = M , we

construct the network code A = [I|α] by choosing αi,j = Ci,j which gives κ(A) = N .

3.4.1.2 Construction based on Vandermonde Matrices

The Vandermonde matrices are defined from a vector of m distinct generating elements

{t1, . . . , tm} of Fq as:

Vm×n :=













1 t1 t21 . . . tn−1
1

...
...

...
...

...

1 tm t2m . . . tn−1
m













. (3.16)

The determinant for the square Vandermonde matrix is given by det(Vn×n) =
∏

1≤i<j≤n(tj−ti))

and Vn is nonsingular iff all the ti’s are distinct. To construct A for given N and M , we do

the following:

1. Choose a suitable Fq with q = 2l ≥ N +M .

2. Choose N +M distinct elements t1, t2, . . . , tN+M of Fq.

3. Construct the Vandermonde matrix VN×N from t1, . . . , tN and VM×N from tN+1, . . . , tN+M .

4. Then αi,j = (VM×NV −1
N×N )i,j and A = [I|αT ]T .

Note that the generating elements that are needed in the construction of RS codes from

Vandermonde matrices requires an extra property that they should be the consecutive powers

of the primitive element β ∈ Fq, i.e. β, β
2, . . . , β2t for a t-error correcting RS code. We do not

need or impose this requirement.
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Lemma 5. Let T ∈ F
n×n
q be an invertible matrix. Then, for any H ∈ F

m×n
q : Γi(H) = Γi(HT )

and κ(H) = κ(HT ), ∀ 1 ≤ i ≤ min(m,n).

Proof. Pick i ∈ (1,min(m,n)) arbitrary rows from H and denote the resulting matrix by H ′.

We need to show that if the rows of H ′ are linearly dependent or linearly independent then so

are the rows of H ′T . This is the case because T is full-rank and hence xH ′ = 0 implies and is

implied by xH ′T = 0 for any x ∈ F
1×i
q .

Picking H = [VN×N |VM×N ] and T = V −1
N×N and using Lemma 5 we have ΓN (G) = κ(G) =

N . Note that since we need N +M distinct elements of the finite field Fq, it is enough to have

q ≥ N +M . Next, we give an example for the case when N = 2 and M = 2 [24].

Example: Consider a [n, k, d] = [4, 2, 3] MDS code C over F4 = {0, 1, α, β = α2 = α + 1}

with symbol representations as {0 = (0, 0), 1 = (0, 1), α = (1, 0), β = (1, 1)}. Constructing the

Vandermonde matrices from the set {0, 1, α, β} and multiplying with the inverse, we have

V =







1 1 1 1

0 1 α β







T

A =







1 0 β α

0 1 α β







T

. (3.17)

Let K = 1 and bi = [bi,1, bi,2],Θi = [θi,1], i = {1, 2}. If the above encoder matrix is used, relays

will transmit the linear combinations βθ1,1 + αθ2,1, αθ1,1 + βθ2,1 respectively. For example for

the first relay, this operation will be performed using regular addition in F2 as (b1,2 + b2,1 +

b2,2, b1,1 + b1,2 + b2,1) and for the second relay (b1,1 + b1,2 + b2,2, b1,1 + b2,1 + b2,2) which can be

put in the matrix form as:


















0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1





































b1,1

b1,2

b2,1

b2,2



















. (3.18)

Notice that since κ(A) = 2 and the destination will be able to recover Θ1,Θ2 when at least

two of the transmissions are successful. It is important to emphasize that unlike MDS code

construction that we gave earlier, here we do not have any restrictions on the code size for any

given N and M , we can find a large enough finite field Fq satisfying q = 2l, l ≥ N +M .
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3.5 Discussions and Further Improvements

In the previous sections, we have established the DMT of DNCC for a given network coding

matrix A, and designed the network coding matrix A for maximum diversity order. In this

section, we study Strategy B, and the case when only some selected relays are allowed to

transmit. We also investigate the performance of RNCC.

3.5.1 Strategy B

The assumption that the relay has to decode all the packets in order to be able to cooperate

may be too restrictive for such schemes. We could relax this assumption and assume that the

relays will participate cooperation even though they have not been able to decode all the

packets.

Denote the outage event under Strategy B by EB
i . Notice that under Strategy B, not only

the M − m relays as in (3.6) but also the rest of the m relays contributes to the decoding

at the destinations. Clearly the probability of not being able to solve the linear system of

equations will decrease and hence the performance will get better, i.e. P (EB
i ) ≤ P (Ei).

Taking ΓN (A) = N , the probability of Elow
i becomes P (Elow

i ) = P (F0)P
M+1
0 (1− P0)

N−1. We

have P (Elow
i ) ≤ P (EB

i ) ≤ P (Ei). But using a similar analysis as in the proof of Theorem 1,

it can be shown that even though Strategy B offers lower packet error rate, the DMT is the

same as that of Strategy A. That is, even though Strategy B improves the packet error rate

performance, the DMT remains unchanged.

3.5.2 RNCC

In RNCC the linear combination coefficients αi,j ’s are chosen randomly from a finite field

Fq. Similar to the deterministic case, destination di cannot recover Θi when the submatrix Ai

is rank deficient, i.e. Ei = rank(Ai) < N . However, unlike the deterministic case there are

two possible reasons to have a rank deficient Ai: one is due to fading and the other is due to

the choice of the random coefficients αij ’s. The former happens when at most N − 1 channels

are operational resulting in an Ai matrix that has at most N − 1 rows. We define this event
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to be the deterministic error event: Edet
i = {Ai has at most N − 1 rows}. The probability

of this event is given by P (Edet
i ) =

∑M
m=0 P (Fm) ·∑N−1

l=0 P (E(N +M −m, l)). Notice that

Edet
i ⊂ Ei. On the other hand, due to the random choice, relays may choose linearly dependent

coefficients which will result in an Ai matrix such that rank(Ai) < N . Denote this event by

Eran
i . But by the Corollary 1, this event will result in the outage events that have diversity

order less than M +1. Therefore, the key idea of this proof is to isolate such events, and show

that the probability of such events can be bounded by the field size as follows:

P (Ei) = P (Ei|Edet
i )P (Edet

i ) + P (Ei|Eran
i )P (Eran

i )

= P (Edet
i ) + P (Ei|Eran

i )P (Eran
i )

≤ P (Edet
i ) + P (Ei|Eran

i ).

Lemma 6. The probability that any N × N square submatrix A′
i of Ai is rank deficient is

upper bounded by P (Ei|Eran
i ) ≤ N/q.

Proof. The proof consists of an application of the Schwartz-Zippel Lemma to a carefully chosen

error event as in the proof of [75, Thm. 2]. The worst case scenario happens when all the

channels between the sources and the destination are in outage and A′
i = Ai. This is the worst

case scenario since if k sources are not in outage, then we only need to consider the determinant

of (N − k) × (N − k) submatrix of Ai whose probability of being rank deficient is less than

that of N ×N matrix. And since Ai has at least N rows when we condition on the event Ec
i ,

it is clear that the probability of having a rank deficient Ai matrix in the case when A′
i 6= Ai

is smaller than the case when A′
i = Ai. Then considering the case when A′

i = Ai, since the

determinant of Ai is a polynomial in terms of the indeterminant αij’s with degree N , using

Schwartz-Zippel Lemma we have the desired result. The bound can be further improved as in

[Lemma-4,[75]] to be 1−
(

1− 1
q

)N
.

Lemma 6 indicates that if the field size is large enough, the error event will be dominated

by Ei with high probability: limq→∞ P (Ei) ≤ P (Edet
i ) + limq→∞N/q = P (Edet

i ).

Note that, although the limit is taken asymptotically with q → ∞, it is enough to have

q ∼= ρM+1. The rest of the proof is the same with the above proof for DNCC. Below we
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summarize all the above proved results with the following theorem:

Theorem 2. DNCC with M intermediate relay nodes which choose their linear combination

coefficients from the rows of A that satisfies ΓN (A) = N and N source nodes achieves the

DMT in both the multicast and unicast scenario and under both strategies A and B:

d (r) = (M + 1)

[

1− (N +M)

N
r

]

, r ∈
(

0,
N

N +M

)

.

RNCC achieves the same DMT with probability at least 1− N
q , where q is the field size.

3.5.3 Selection Relaying

We can also consider the case where not all of the M relays transmit, but only K selected

relays transmit. The same selection rule based on the instantaneous wireless channel conditions

can be adapted as in [40]. Define

hi , min{|hs1iri |2, |hrid1i |2, . . . , |hsN ri |2, |hridN |2}. (3.19)

Then, select the K relays that maximizes hi, namely first choose r with the rule: r =

argmaxri hi and continue the same process of choosing the maximum in the beginning of

each relay transmission. Note that a relay can be selected more than one time. This selection

mechanism can be implemented using a distributed protocol at the network layer as in [26]: re-

lays choose a timer that is inversely proportional to the quality of their channels. Relays assess

the quality of their channels from the request-to-send and clear-to-send (RTS-CTS) packets

that were transmitted by the source and destination nodes respectively1. No channel state

information (CSI) is required at the physical layer. Next, we give the DMT of this scheme.

Theorem 3. DNCC scheme with the selection of the best K relay nodes out of M and N

source nodes, ΓN (A) = N in the multicast scenario achieves the DMT:

d (r) = (K + 1)

(

1− (N +K)

N
r

)

, r ∈
(

0,
N

N +K

)

1Forward and backward channels between the relays and the destinations are assumed the same due to
reciprocity [76].
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if K < N − 1, and otherwise achieves the DMT:

d (r) = (N +M (K − (N − 1)))

(

1− N +K

N
r

)

, (3.20)

where r ∈
(

0, N
N+K

)

.

Proof. See the Appendix B.

In [26], for a single source single destination setup it was proved that instead of transmitting

from all the M relays, if a selection is performed and only the relay with the best channel

coefficient transmits then the bit error rate (BER) at the destination enjoys a M -fold diversity

gain. Inspired by this idea, the authors in [40] proposed a NCC scheme for N s-d pairs and M

relays where only the “best” relay selected according to (3.19), XOR’es all the source packets

and transmits to the destination (Fig. 3.2 (b)). However, the M -fold diversity order can only

be achieved when an unrealistic assumption is made. The assumption is that the destination

has to be able to decode all the other source packets successfully. When no such assumption

is made, no gain from the selection process is obtained and only a diversity order of one is

achieved. The significance of our result in Theorem 3 is that if enough number of relays could

be used (K ≥ N − 1), we can achieve N +M (K − (N − 1)) diversity order.

3.6 Comparison with Other Schemes

3.6.1 DMT Comparison

In this section, we would like to compare DMT of the previously proposed schemes in the

literature. The closest scheme in the literature is the NCC scheme considered in [40]. In NCC

instead of all the relays, only one relay transmits which results in total of N + 1 time slots.

Using fewer time-slots NCC achieves a better spectral efficiency than the proposed scheme

here. However, NCC can only provide a fixed diversity order of two, while the proposed

scheme achieves the maximum diversity order of M + 1.

In the following, for comparison we include the DMT performance of NCC and that of

CC which includes space-time coded protocols [35] and selection relaying [26]. The diversity-

multiplexing tradeoff of NCC is given by [40]: d (r) = 2 (1− r(N + 1)/N) , r ∈ (0, N/(N + 1)).
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Figure 3.3 DMT comparison of various schemes

The DMT of the decode and forward strategy with M intermediate relay nodes is given by

[35]: d (r) = (M + 1) (1− 2r) , r ∈ (0, 0.5) .

To show the advantage of the proposed schemes, we present DMT of the existing schemes

and the proposed schemes in Fig. 3.3. As can be seen from the figure, both of the proposed

schemes and CC provide the maximum diversity order of M + 1 when r → 0. However, the

proposed schemes can provide a higher diversity gain than CC when the spectral efficiency

increases.

3.6.2 Monte-Carlo Simulation

Here, we compare these schemes with the existing schemes via Monte-Carlo simulations. In

the simulations, we only consider the channel conditions so as to isolate the diversity benefits.

We generate an (N + M) × N and an N × N matrix that contains the channel coefficients

for each destination and each relay, respectively. Then, we decide that the transmission is

successful for any link if the instantaneous channel is strong enough to support the given data

rate and we update combining coefficients accordingly. After all the transmissions take place,

we perform Gaussian elimination on the updated combining coefficient matrices to conclude

whether each destination di is able to recover the source packet Θi. We set β = 1 and R0 = 1
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Figure 3.4 Average outage probability per destination, (N = 2,
M = 1, . . . 3)
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Figure 3.5 Average outage probability per destination, (N = 3,
M = 1, . . . 3)
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Figure 3.6 Average outage probability per destination, (N = 2,
M = 1, . . . 3)

BPCU. In all the figures only the unicast scenario is adapted since CC cannot be implemented

in a multicast scenario. As can be seen from Fig. 3.4 and Fig. 3.5, the proposed schemes are

able to provide the M + 1 diversity order and outperform the other schemes.

Theorem 2 claims that the performance loss incurred due to the assumption under Strategy

A is not in terms of diversity gain but it is in terms of coding gain. This is validated through

Monte-Carlo simulations as shown in Fig. 3.6 and Fig. 3.7.

3.7 Conclusions

We studied the network coded cooperation schemes for N source-destination pairs assisted

with M relays. We studied two different traffic network models: multicast and unicast. The

proposed schemes allow the relays to apply network coding on the data it has received from its

neighbors. We allow the relays to linearly combine the packets with coefficients either deter-

ministically pre-designed or drawn from a finite field randomly. We established the diversity-

multiplexing tradeoff performance of the proposed schemes for any network coding matrix,

and showed its advantage over the existing schemes when the coding matrix is optimized.

Specifically, it is capable of achieving the maximum diversity order M + 1 at the expense of
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Figure 3.7 Average outage probability per destination, (N = 3,
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a slightly reduced multiplexing rate. We derived the necessary and sufficient conditions to

achieve the maximum diversity order. We showed that when the parity-check matrix for a

(N +M,M,N +1) systematic MDS code is used as the network coding matrix, the maximum

diversity is achieved. We presented two ways to generate the network coding matrix: using

either the Cauchy matrices or the Vandermonde matrices. Both constructions guarantee max-

imum diversity order. When a relay selection is possible, we show that a multiplicative effect

on the diversity order is possible when enough rounds of relay selection is performed.
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CHAPTER 4. Interference Alignment for Wired Networks with General

Message Demands

4.1 Introduction

Since its introduction in [1], network coding has been accepted as a successful technique for

achieving high throughput with more robustness and energy savings. Ahlswede et al. proved

that network coding achieves the max-flow value in a single-source multicast setup which would

otherwise have been impossible to achieve by simple routing. In spite of the clear gain over

routing in the multicast setup [7], the gains that network coding has to offer over routing in the

multiple unicast setup is still yet to be understood. A conjecture appeared in 2004 by Li and

Li [11] for undirected graphs which claims that use of network coding does not lead to any gain

over routing. Also it was shown in [9] that there exist a solvable network which does not have

a linear solution over any ring R, any finite R-module G and any vector dimension. Partly

due to the difficulty in the analytical tractability of the nonlinear solutions, linear solutions

are still popular and being proposed [47, 48].

Another important technique that recently emerged for wireless communications is the in-

terference alignment [77, 3, 78, 42]. Because of the broadcast nature of the wireless medium,

interference becomes one of the dominant factors of performance degradation in wireless net-

works. In [3], Cadamba and Jafar showed that if interference at the receivers are aligned by

choosing appropriate precoding matrices at the source nodes, then interference space could be

minimized. In a K user setup, they showed that it is possible for each user to achieve half

of the rate that is possible in the absence of interference. Later, this result is extended to K

sources J destination nodes with arbitrary message demands by [46].

Recently, authors in [47, 48] proposed to use the interference alignment technique in the
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wired networks. In a three source three destination node setup, they were able to show that

each user can achieve a rate of one half when the min-cut is one and the network transfer

functions satisfy certain conditions. 3 unicast connections also considered in [79] where authors

characterize the feasibility of the connections based on the connectivity levels which is defined

as the number of edge-disjoint paths between the source-destination pairs.

In this thesis, we extend the idea of using interference alignment in wired networks to

more general networks. We consider networks with K source nodes and J destination nodes

with arbitrary message demands. We first consider a simple network consisting of three source

nodes and four destination nodes and show that each user can achieve a rate of one half.

Then we give the result for the general case which states that when the min-cut between each

source-destination pair is one, it is possible to achieve a sum rate that is arbitrarily close to

the min-cut between the source nodes whose messages are demanded and the destination node

where the sum rate is the summation of all the demanded source message rates plus the biggest

interferer’s rate.

Rest of the chapter is organized as follows. Sec. 4.2 introduces the system model and

formulation of the problem that is studied. Sec. 4.3 presents the proposed approach and

illustrates it on a simple network consisting of three sources and four destinations. Then Sec. 4.4

generalizes the result to more general networks consisting of K sources and J destinations.

Finally, Sec. 4.6 summarizes and concludes the chapter.

4.2 General System Description

The network studied in this chapter is composed of K source nodes s1, . . . , sK , and J

destination nodes d1, . . . , dJ with arbitrary number of intermediary relay nodes in between.

The network is assumed to be representable by a directed and acyclic graph G = (V,E) where

V is the set of nodes, and E is the set of directed edges. Each edge e ∈ E has unit capacity

and can transmit one symbol from a finite field Fq per unit time. Each source message is

independent of rest of the source messages. Each directed edge is an error-free channel and the

transmissions from different edges do not interfere with each other. The interference that we
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try to combat in this problem occurs only as a result of the application of network coding at

the intermediary nodes. Here, we consider destination nodes with arbitrary message demands

meaning di is interested in a subset of the source messages.

Linear network coding is employed at the intermediary nodes in the usual sense by choosing

coefficients from Fq and making a linear combination of the symbols received from the incoming

edges. The number of these coefficient vectors ai’s depends on the number of outgoing and

incoming edges. Define all the coefficients to be used by a = [a1 . . . as] ∈ F
s
q. Let Xi denote

the source si’s input vector. Let t = 1, 2, . . . denote the channel use index, and let at denote

the linear combination coefficients used during the channel use t.

We know from [6] that, when intermediary nodes apply network coding, we can represent

the input output relation at the destination nodes using a transfer matrix M as follows:

Yj(t) =

K
∑

k=1

Mjk(a
(t))Xk(t). (4.1)

Assume that the min-cut between sk and rj is cjk and that cj = maxk cjk, then Mjk is

a cj × cjk matrix whose elements are polynomials that belong to the polynomial ring Fq[a],

Xk ∈ F
cjk×1
q the input vector at source node sk and Yj ∈ F

cj×1
q is the received vector at the

destination node dj during the channel use t. The problem can be formulated as follows: given

the min-cut values cjk’s, what is the maximum achievable total throughput of all users?

In the next section, we start considering a simple network with three source nodes (K = 3)

and four destination nodes (J = 4) and ci = 1. Receivers 1 and 4 are interested in the message

of source node s1 and receivers 2 and 3 are interested in the messages of the source nodes

s2 and s3 respectively. For this example we show that for a broad class of these networks it

is possible to achieve a throughput of 1/2 for each source node when the min-cut for each

source-destination pair is 1. Then we generalize the result to arbitrary number of source and

destination nodes and show that it is possible to achieve a sum rate that is arbitrarily close

to the min-cut between the source nodes whose messages are demanded and the destination

node where the sum rate is the summation of all the demanded source message rates plus the

biggest interferer’s rate. Before we move on to the next section we quote the Schwartz-Zippel

Lemma from [47] which will be very useful in the sequel.
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Lemma 7. Let p(x1, x2, . . . , xn) be a non-zero polynomial in the polynomial ring F[x1, x2, . . . , xn],

where F is a field. If |F| is greater than the degree of p in every variable xj, there exist

r1, r2, . . . , rn ∈ F such that p(r1, r2, . . . , rn) 6= 0.

4.3 Simple Case: Three Source Four Destination Nodes

Consider a time expansion model of this network for τ = 2(l + 1)4, where l is a positive

integer. Taking b as the block index, ci = 1 and using (4.1) we have,

Y1(b) = M11(b)X1(b) +M12(b)X2(b) +M13(b)X3(b), (4.2)

Y2(b) = M21(b)X1(b) +M22(b)X2(b) +M23(b)X3(b),

Y3(b) = M31(b)X1(b) +M32(b)X2(b) +M33(b)X3(b),

Y4(b) = M41(b)X1(b) +M42(b)X2(b) +M43(b)X3(b),

where Xi(b), Yi(b) ∈ F
τ
q are the time expanded version of each input and output symbol and

Mij(b) ∈ F
τ×τ
q ’s are diagonal matrices. Take the message symbols at the sources to be Z1 ∈

F
(l+1)4

q , Z2 ∈ F
l(l+1)3

q and Z3 ∈ F
l4
q . Then the input symbols at the sources can be expressed

using the corresponding precoding matrices Vi’s as Xi = ViZi, i ∈ {1, 2, 3} where specifically

V1 ∈ F
τ×(l+1)4
q , V2 ∈ F

τ×l(l+1)3
q and V3 ∈ F

τ×l4
q . Notice that Vi’s have to be full-rank matrices

since otherwise different Zi’s could be mapped to the same Xi.

First we give the interference alignment requirements for the model given in (4.2). We

want to choose precoding matrices such that the interference from source 2 and 3 is aligned at

r1 and r4:

span(M13V3) ⊆ span(M12V2) (4.3)

rank[M11V1 M12V2] = (l + 1)4 + l(l + 1)3

span(M43V3) ⊆ span(M42V2)

rank[M41V1 M42V2] = (l + 1)4 + l(l + 1)3.
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Similarly, we want to align the interference from source 1 and 3 at r2:

span(M23V3) ⊆ span(M21V1) (4.4)

rank[M21V1 M22V2] = (l + 1)4 + l(l + 1)3.

And finally, we want to align the interference from source 1 and 2 at r3:

span(M32V2) ⊆ span(M31V1) (4.5)

rank[M31V1 M33V3] = (l + 1)4 + l4.

We adapt the same framework in [46] for the choices of the precoding matrices. Before we

give the precoding matrices, please note that Mij ’s are assumed to have well-defined inverses.

We will formalize this assumption more precisely using network transfer functions mij(a)’s in

the sequel. First define,

T
[1]
2,3 = M−1

12 M13, T
[2]
1,3 = M−1

21 M23 (4.6)

T
[3]
1,2 = M−1

31 M32, T
[4]
2,3 = M−1

42 M43

then choose precoding matrices such as:

V1 =
{

(T
[1]
2,3)

α1(T
[2]
1,3)

α2(T
[3]
1,2)

α3(T
[4]
2,3)

α41τ : αi = {0, 1, . . . , l}, i = 1, . . . , 4
}

(4.7)

V2 =











(T
[1]
2,3)

α1(T
[2]
1,3)

α2(T
[3]
1,2)

α3(T
[4]
2,3)

α41τ :
αi = {0, 1, . . . , l}, i 6= 3

α3 = {0, 1, . . . , l − 1}











(4.8)

V3 =
{

(T
[1]
2,3)

α1(T
[2]
1,3)

α2(T
[3]
1,2)

α3(T
[4]
2,3)

α41τ : αi = {0, 1, . . . , l − 1}
}

(4.9)

where 1τ is the all-1 vector of dimension τ .

Note that this choice of the precoding matrices guarantees that the span conditions are met.

To satisfy the rank requirements, note that all the Vi’s should be full-rank. Since Vi ⊆ V1 where

i = {2, 3}, it is enough to show that V1 is full-rank. V1 is full-rank if ∀pi ∈ Fq, i = 1, . . . , (l+1)4
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except the trivial choice of all zeros we have,

(l+1)4
∑

k=1

pk(T
[1]
2,3)

α1k(T
[2]
1,3)

α2k(T
[3]
1,2)

α3k (T
[4]
2,3)

α4k1τ 6= 0τ

αjk = {0, 1, . . . , l}, j = 1, . . . , 4. (4.10)

where 0τ is the all-1 vector of dimension τ . Recall that Mij’s are diagonal matrices. Let

Mij = [mij(a
t)](t,t), t = {1, . . . , τ} so that mij(a

t) is the tth diagonal element of Mij . Then

(4.10) reduces to,

q(at) =

(l+1)4
∑

k=1

pk

(

m1,3

m1,2
(at)

)α1k
(

m2,3

m2,1
(at)

)α2k

·
(

m3,2

m3,1
(at)

)α3k
(

m4,3

m4,2
(at)

)α4k

6= 0

αjk = {0, 1, . . . , l}, j = 1, . . . , 4, t = {1, . . . , τ}. (4.11)

Let ā , [a1, . . . , aτ ] and also let qN (at) and qD(at) be the numerator and denominator

polynomials of q(at) such that q(at) , qN (at)/qD(at). Now define the polynomial q(ā) ,

∏τ
t=1 qD(a

t)qN (at)). Then in order for V1 to be full-rank q(ā) needs to be a non-zero polynomial.

We make the following assumption on the network transfer functions mij(a)’s:

(A1) q(ā) 6= 0. (4.12)

Then, the existence of an assignment ā in F
τs
q such that q(ā) is nonzero is guaranteed by the

Lemma 7 for a sufficiently large field size q. Next consider the following product polynomial

similar to [47]:

p(ā) =
∏

i ∈ {1, 2, 3}

j ∈ {1, 2, 3, 4}

τ
∏

t=1

mij(a
t).

Then one can see that the diagonal matrices Mij’s have well-defined inverses as long as

p(ā) is non-zero. Now consider the rank conditions given above at each destination node. We

need to show that the following holds:

rank[M11V1 M12V2] = (l + 1)4 + l(l + 1)3.
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Since Mij is invertible as explained above, it is enough to show that:

rank[V1 M−1
11 M12V2] = (l + 1)4 + l(l + 1)3.

Now consider the following polynomials.

r1(a
t) =

(l+1)4
∑

k=1

pk

(

m1,3

m1,2
(at)

)α1k
(

m2,3

m2,1
(at)

)α2k
(

m3,2

m3,1
(at)

)α3k
(

m4,3

m4,2
(at)

)α4k

(4.13)

+
m11

m12
(at)

(l+1)4+l(l+1)3
∑

k=(l+1)4+1

pk

(

m1,3

m1,2
(at)

)α5k
(

m2,3

m2,1
(at)

)α6k
(

m3,2

m3,1
(at)

)α7k
(

m4,3

m4,2
(at)

)α8k

,

αjk =











{0, 1, . . . , l − 1}, j = 7,

{0, 1, . . . , l}, j = {1, . . . , 6, 8}











, t = {1, . . . , τ}.

r2(a
t) =

(l+1)4
∑

k=1

pk

(

m1,3

m1,2
(at)

)α1k
(

m2,3

m2,1
(at)

)α2k
(

m3,2

m3,1
(at)

)α3k
(

m4,3

m4,2
(at)

)α4k

(4.14)

+
m22

m21
(at)

(l+1)4+l(l+1)3
∑

k=(l+1)4+1

pk

(

m1,3

m1,2
(at)

)α5k
(

m2,3

m2,1
(at)

)α6k
(

m3,2

m3,1
(at)

)α7k
(

m4,3

m4,2
(at)

)α8k

,

αjk =











{0, 1, . . . , l − 1}, j = 7,

{0, 1, . . . , l}, j = {1, . . . , 6, 8}











, t = {1, . . . , τ}.

r3(a
t) =

(l+1)4
∑

k=1

pk

(

m1,3

m1,2
(at)

)α1k
(

m2,3

m2,1
(at)

)α2k
(

m3,2

m3,1
(at)

)α3k
(

m4,3

m4,2
(at)

)α4k

(4.15)

+
m32

m31
(at)

(l+1)4+l4
∑

k=(l+1)4+1

pk

(

m1,3

m1,2
(at)

)α5k
(

m2,3

m2,1
(at)

)α6k
(

m3,2

m3,1
(at)

)α7k
(

m4,3

m4,2
(at)

)α8k

,

αjk =







{0, 1, . . . , l − 1}, j = {5, . . . , 8},

{0, 1, . . . , l}, j = {1, . . . , 4}






, t = {1, . . . , τ}.

r4(a
t) =

(l+1)4
∑

k=1

pk

(

m1,3

m1,2
(at)

)α1k
(

m2,3

m2,1
(at)

)α2k
(

m3,2

m3,1
(at)

)α3k
(

m4,3

m4,2
(at)

)α4k

(4.16)

+
m41

m42
(at)

(l+1)4+l(l+1)3
∑

k=(l+1)4+1

pk

(

m1,3

m1,2
(at)

)α5k
(

m2,3

m2,1
(at)

)α6k
(

m3,2

m3,1
(at)

)α7k
(

m4,3

m4,2
(at)

)α8k

,

αjk =











{0, 1, . . . , l − 1}, j = 7,

{0, 1, . . . , l}, j = {1, . . . , 6, 8}











, t = {1, . . . , τ}.
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Define rj(ā) ,
∏τ

t=1 r
D
j (at)rNj (at) where we have the denominator and the numerators

polynomials defined as rj(a
t) , rNj (at)/rDj (at) and rj(a

t) is given as above. We make the

following assumption on the network transfer functions mij(a)’s:

(A2) rj(ā) 6= 0, ∀j = {1, . . . , 4}. (4.17)

Now consider a polynomial f(ā) which is the multiplication of the polynomials defined

earlier such that,

f(ā) = p(ā)q(ā)r1(ā)r2(ā)r3(ā)r4(ā).

We know that by assumptions (A1)− (A2) and with the assumption that mij(a)’s are non-

trivial polynomials, f(ā) also becomes a non-trivial polynomial. Therefore, using Lemma 7 we

can conclude that for large enough field size q, there exist ā0 ∈ F
τs
q such that f(ā0) 6= 0. Since

by using such an ā0 all the rank and span conditions are satisfied, it is possible to achieve a

throughput of (12 ,
1
2 ,

1
2):

lim
l→∞

|V1|
τ

= lim
l→∞

(l + 1)4

2(l + 1)4
=

1

2
,

lim
l→∞

|V2|
τ

= lim
l→∞

l(l + 1)3

2(l + 1)4
=

1

2
,

lim
l→∞

|V3|
τ

= lim
l→∞

l4

2(l + 1)4
=

1

2
.

Now we can state the result formally.

Theorem 4. In a three-source four-destination multiple unicast network representable by a

directed, acyclic graph G, if the min-cut for each source-destination pair is 1 and if the net-

work transfer functions mij(a), i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4} consists of non-trivial polynomials

satisfying the assumption (A1) q(ā) ,
∏τ

t=1 qD(a
t)qN (at) 6= 0 where q(at) , qN (at)/qD(a

t)

and

q(at) =

(l+1)4
∑

k=1

pk

(

m1,3

m1,2
(at)

)α1k
(

m2,3

m2,1
(at)

)α2k
(

m3,2

m3,1
(at)

)α3k
(

m4,3

m4,2
(at)

)α4k

6= 0

αjk = {0, 1, . . . , l}, j = 1, . . . , 4, t = {1, . . . , τ}.
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and also satisfying the assumption (A2) rj(ā) ,
∏τ

t=1 r
D
j (at)rNj (at) 6= 0, ∀j = {1, . . . , 4},

where rj(a
t) , rNj (at)/rDj (at) and rj(a

t) is given as in (4.13)-(4.16), then each source can

achieve a rate arbitrarily close to 1/2 .

4.4 General Case: K Source J Destination Nodes

In this section, we generalize the results to the networks consisting of K source nodes and

J destination nodes with general message demands. Let Mj denote the set of sources whose

messages are demanded at the destination node j. Also let CSi,j denote the min-cut value

between the source nodes in the set Si ⊆ {s1, . . . , sK} and the destination node dj . Max-flow

min-cut theorem gives us an upper bound on the achievable total rate between the sources in

Si and the destination node dj :

∑

i∈Si

ri ≤ CSi,j, ∀1 ≤ j ≤ J. (4.18)

where ri is the rate at the source node si. From now on, we assume that maxj CSi,j , C̄ ≤ 1.

We introduce some notation from [46]. Define T
[j]
m,n , M−1

jmMjn as the matrix corresponding

to the alignment constraint

span(MjnVn) ⊆ span(MjmVm)

that enforces the interference from message n to be aligned to the interference of message m

at receiver j. Without loss of generality, we assume the following order on the source rates:

rK ≤ rK−1 ≤ · · · ≤ r2 ≤ r1 (4.19)

Based on (4.19), for any T
[j]
m,n matrix, we always have n > m. Also let δj = min{k|k ∈ Mc

j}

and define the following set

C :=























(m,n, j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

j ∈ {1, . . . , J},

m, n ∈ Mc
j ,

m = δj , n > m























.
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which basically defines C as a set of vectors denoting all the alignment constraints. Notice

that Γ , |C| is the total number of matrices T
[j]
m,n matrices. Let Γk be the cardinality of the

following set

Ck = {(m,n, j)|(m,n, j) ∈ C, n ≤ k} , k = 1, . . . ,K (4.20)

which defines the number of (m,n, j) indices for which the matrix T
[j]
m,n has its exponents from

the set {0, . . . , l − 1}, while for the other Γ− Γk indices the matrix T
[j]
m,n can be raised to the

power of l. Consider a time expansion of τ = κ(l + 1)Γ for this network.

Now, define the achievable rate region D(r) as in (4.21).

D(r) =







r ∈ R
K ,

∣

∣

∣

∣

∑

i∈Mj

ri + max
k∈Mc

j

rk ≤ CMj ,j, ∀j ∈ {1, . . . , J}







(4.21)

Any irrational number can be approximated by a rational number arbitrarily closely. Then

notice that if Ṽi’s are chosen as given below,

Ṽk=















∏

(m,n,j)∈C

(

T [j]
m,n

)αm,n,j

wi

∣

∣

∣

∣

1≤ i≤ r̄k, αm,n,j∈















{0, 1, . . . , l}, if n > k

{0, 1, . . . , l − 1}, otherwise















, 1≤k≤K.

(4.22)

the alignment conditions are satisfied [46]. For Zi to be recoverable from Xi, we need Ṽi to be

full-rank. Because of (4.19), it is enough to show that Ṽ1 is full-rank. Consider the following

rational function,

Q(at) =

r̄kl
Γk (l+1)Γ−Γk
∑

k=1

pk
∏

(m,n,j)∈C

(

mjn(a
t)

mjm(at)

)αm,n,j

[wi]t. (4.23)

Define Q(ā) =
∏τ

t=1 Q
D(at)QN (at) where Q(at) , QN (at)/QD(at). Then we have Ṽ1 full-rank

if Q(ā) 6= 0.

(A3) Q(ā) 6= 0. (4.24)

Similar to the proof of Theorem 4, we need Mij ’s to have well-defined inverses for which we
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define the following polynomial.

P (ā) =
∏

i ∈ {1, . . . ,K}

j ∈ {1, . . . , J}

τ
∏

t=1

mij(a
t).

What remains is to show that the rank conditions are satisfied which will guarantee that

the intended message space and the interference spaces are independent. For example, we need

to have the following matrix

Λj =
[

Mjm1,j
Ṽm1,j

|Mjm2,j
Ṽm2,j

| . . . ,Mjmβj,j
Ṽmβj ,j

|Mjδj Ṽδj

]

(4.25)

to be full rank at destination node dj .

Notice that for any point within D(r)

∑

m∈Mj

r̄m + r̄δj ≤ κ (4.26)

always holds (recall C̄ ≤ 1) which makes the matrix Λj either tall or square. For any row r of

its upper square sub-matrix, its elements can be expressed in the following general form:

Mjk(r)
∏

(m,n,j)∈C

(

M−1
jm(r)Mjn(r)

)αm,n,j

[wi]r.

Therefore, for (4.25) to be full-rank, we need mij’s such that Rr
j(a) 6= 0 for any row r of its

upper square sub-matrix, where Rr
j(ā) is,

Rj(a
r) =

∑
k∈Mj∪{δj}

r̄kl
Γk (l+1)Γ−Γk

∑

tk=1

ptkmjk(a
r)

∏

(m,n,j)∈C

(

mjn(a
r)

mjm(ar)

)αm,n,j

[wi]r. (4.27)

For any rational rate vector r = (r1, . . . , rK) within D(r) that satisfies (4.19), we can choose a

κ ∈ Z
+, such that

κr = (r̄1, r̄2, . . . , r̄K) ∈ Z
K
+ .

We define R(ā) ,
∏

r,j R
D
j (a

r)RN
j (ar) where RD

j (a
r) and RN

j (ar) is defined as Rj(a
r) ,

RN
j (ar)/RD

j (ar). We make the following assumption on the network transfer functionsmij(a)’s:

(A4) R(ā) 6= 0. (4.28)
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Define the grand polynomial F (ā),

F (ā) = P (ā)Q(ā)R(ā).

Now we know that by assumptions (A3)−(A4) and with the assumption that mij(a)’s are non-

trivial polynomials, F (ā) also becomes a non-trivial polynomial. Therefore, using Lemma 7 we

can conclude that for large enough field size q, there exist ā0 ∈ F
τs
q such that F (ā0) 6= 0. Since

by using such an ā0 all the rank and span conditions are satisfied, it is possible to achieve a

throughput of

lim
l→∞

|Vk|
τ

= lim
l→∞

r̄kl
Γk(l + 1)Γ−Γk

κ(l + 1)Γ
=

r̄k
κ

= rk.

We summarize the result in the following theorem.

Theorem 5. In a K-source J-destination multiple unicast network representable by a directed,

acyclic graph G, if the min-cut for each source-destination pair is 1 and if the network transfer

functions mij(a), i ∈ {1, . . . ,K}, j ∈ {1, . . . , J} consists of non-trivial polynomials such that

(∀pk, ptk ∈ Fq except the trivial choices of all zeros) polynomials Q(ā) and R(ā) defined below

is nonzero:

Q(ā) =
τ
∏

t=1

∏

(m,n,j)∈ C

mjm(at)αm,n,j

{ r̄kl
Γk (l+1)Γ−Γk
∑

k=1

pk
∏

(m,n,j)∈ C

(

mjn(a
t)
)αm,n,j [wi]t

}

6= 0

R(ā) =
∏

r = {1, . . . , τ},

j = {1, . . . , J}

∏

(m,n,j)∈ C

(mjm(ar))αm,n,j ·

{

∑
k∈Mj∪{δj}

r̄kl
Γk (l+1)Γ−Γk

∑

tk=1

ptkmjk(a
r)

∏

(m,n,j)∈C

(mjn(a
r))αm,n,j [wi]r

}

6= 0.

Then it is possible to achieve the rates that are in D(r) arbitrarily closely:

D(r) =







r ∈ R
K ,

∣

∣

∣

∣

∑

i∈Mj

ri + max
k∈Mc

j

rk ≤ CMj ,j, ∀j ∈ {1, . . . , J}







.
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(a, b, c)

ax + by + cz

(aw + t)x + (bw)y + (cw)z

ax + by + cz

(ar)x + (br)y + (cr + s)z

ax + by + cz

ax + by + cz

(t, w)

(p, q)

(ap + q)x + (bp)y + (cp)z

Figure 4.1 An example network for which the proposed interference align-
ment can not be applied since the assumption (A2) is violated.

4.5 Discussion

In this section, we would like to give an example network to demonstrate how the assump-

tions can be used to verify if the network would support the proposed interference alignment

scheme or not. The example is adapted from one of example networks given in [48] and mod-

ified for three source four destination case. In the function r1(a
t), take α3k = 1, p3 = 1, p5 = 1

and take all the other αij = 0, pi = 0. Then we need to have:

m11 6=
m12m31

m32

But, when we plug-in the values we obtain:

ar =
(br)(a)

b
.

And one can see that no matter what element we pick from the finite field, we will have an

equality, hence the inequality in the assumption can not be satisfied.

Here we would like to point out that the assumption on the network transfer functions

mij(a)’s to be non-trivial polynomials can be relaxed using a similar approach as in [47].

Instead of the trivial mij(a) polynomials, it was proposed to use new variables which would

act as “virtual” interference. Here same idea can be applied by changing the assumptions

(A1) − (A4) accordingly.

It can be observed that the number of assumptions increases rapidly as the network grows

larger. However, we would like to point out that the assumptions made here are verifiable
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given enough time and computation power. Trying to reduce the number of assumptions made

and trying to relate these assumptions with graph theoretical properties such as the min-cut

value is an important direction for future work.

4.6 Conclusions

In this chapter, we first considered a simple network consisting of three source nodes and

four destination nodes and showed that each user can achieve a rate of one half. Then we

extended the result for a more general network consisting of K source nodes and J destination

nodes. We show that when the min-cut between a source-destination pair is one, it is possible

to achieve a sum rate that is arbitrarily close to the min-cut between the source nodes whose

messages are demanded and the destination node where the sum rate is the summation of all

the demanded source message rates plus the biggest interferer’s rate. As a future work, it

would be interesting to search for examples of networks for which interference alignment works

as a better technique compared to routing and network coding. Another possible research

direction would be to study the effect of delay similar to the approach in [6].
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CHAPTER 5. CONCLUSION AND FUTURE WORK

In this thesis, we studied application of network coding to the multi-source networks for

both wired and wireless settings. We had different design goals because of the differences in the

nature of these two settings. For example in the wireless setup, one of the major problems is the

multipath fading. And the best way to deal with fading is to introduce diversity. Therefore in

the wireless setup our goal was to introduce diversity by applying a combination of techniques

from cooperative communication and network coding.

To be more specific, for the wireless setup we proposed a network coded cooperation scheme

forN source-destination pairs assisted withM relays under two different traffic network models:

multicast and unicast. The proposed schemes allow the relays to apply network coding on the

data it has received from its neighbors. We allow the relays to linearly combine the packets

with coefficients either deterministically pre-designed or drawn from a finite field randomly.

We established the diversity-multiplexing tradeoff performance of the proposed schemes for any

network coding matrix, and showed its advantage over the existing schemes when the coding

matrix is optimized. Specifically, it is capable of achieving the maximum diversity order M+1

at the expense of a slightly reduced multiplexing rate. We derived the necessary and sufficient

conditions to achieve the maximum diversity order. We showed that when the parity-check

matrix for a (N+M,M,N+1) systematic MDS code is used as the network coding matrix, the

maximum diversity is achieved. We presented two ways to generate the network coding matrix:

using either the Cauchy matrices or the Vandermonde matrices. Both constructions guarantee

maximum diversity order. When a relay selection is possible, we show that a multiplicative

effect on the diversity order is possible when enough rounds of relay selection is performed.

In the wired setup, we had different design goals. We considered wired networks consisting
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of multiple source and destination nodes and multiple relays. The best known bound for this

setup is the cut-set bound. Hence our design goal was to get as close as possible to the cut-

set bound. As pointed out before, network coding offers high throughput for single-source

multicasting. However, if one would like to apply network coding to multiple-source networks

to achieve higher throughput, network coding introduces interference to the system rendering

the decodability of the source messages at the destination nodes. Therefore in the wired setup,

our goal was to try to benefit from network coding’s capability of providing high throughput,

but also at the same time combat with the interference that comes along with the linear

combination of the signals. Towards achieving this goal, we borrowed interference alignment

techniques which was originally proposed for wireless networks. We first considered a simple

network consisting of three source nodes and four destination nodes and showed that each user

can achieve a rate of one half under certain assumptions on the network transfer functions.

Then we extended the result for a more general network consisting of K source nodes and J

destination nodes. The interference alignment tools enabled us to align all the interference at a

particular receiver to its biggest interferer’s space. As a result we were able to show that when

the min-cut between each source-destination pair is one, it is possible to achieve a sum rate

that is arbitrarily close to the min-cut between the source nodes whose messages are demanded

and the destination node where the sum rate is the summation of all the demanded source

message rates plus the biggest interferer’s rate.

For both wired and wireless networks, our approach can be extended in several directions.

For wireless networks, instead single-hop as we considered in this thesis, the model can be

extended to allow multi-hop between the relays. Another interesting direction would be to

apply network coding in the physical layer unlike our approach in this thesis which was to

apply it at the network layer. Application of network coding at the physical layer brings its

own challenges like CFO and the synchronization problem.

For wired networks, multiple future research directions exist as well. One of the possibilities

for the future work could be to discover examples of networks for which interference alignment

works as a better technique compared to routing and other existing methods like butterfly
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packing, etc. Another direction might be to try to minimize the number of assumptions that

have been made. Trying to relate these assumptions to graph theoretical properties such as

the min-cut value is another important future research direction. In our study for the wired

networks, one of the important assumptions that we made was to assume that the min-cut for

all source-destination pairs to be one. The general case for arbitrary min-cut values is certainly

an important open problem. It might also be interesting to study the proposed approach for

networks with delays similar to the approach in [6].
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APPENDIX A. Proof of Lemma 3

Here we define the following relevant events. Ēi , {ei 6∈ span(Ai)}, Ēi
up

, {Ai has at most

Λi(A) − 1 rows}. Notice that, Ēi ⊂ Ēi
up

by the first condition in the definition of Λi-rank.

By the second condition in the definition of Λi-rank, there exist a collection of Λi(A)− 1 rows

of Ai that does not span ei. Let Āi denote a (Λi(A) − 1) × N submatrix of Ai that consists

of such rows. Keeping the definition of Fm define Ēi
low

, {F0 ∩ {Ai = Āi}}. It follows that

Ēi
low ⊂ Ēi. Since Ēlow

i ⊂ Ēi ⊂ Ēi
up
, using (3.6) and (3.7) we have:

P (Ēi) ≤ P (Ēi
up
)

= P0

M
∑

m=0

P (Fm) ·
Λi(A)−1
∑

l=0

P (E(N − 1 +M −m, l)), (A.1)

and

P (Ēi)≥P (Ēi
low

)=P (F0)P
N+M−(Λi(A)−1)
0 (1− P0)

Λi(A)−1

where the first P0 in (A.1) accounts for the outage of the direct link between si and di. The

limits in the second summation in (A.1) is due to the fact that the destination di may not be

able to recover all Θi’s, if only Λi(A) − 1 or less number of transmissions are successful. The

rest of the proof can be completed by showing that the diversity orders of both the upper and

the lower bound are equal to (3.14) as in the proof of the multicast scenario. �
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APPENDIX B. Proof of Theorem 3

Let r = argmaxhi where hi is as in (3.19). The cdf for |hjr|2 (or |hrj |2) where j can be a

source (or a destination) node was derived in [40] as:

F (τ) =

∫ τ

0

M
∑

m=1







βkrme
−βmφ

M
∏

j 6=m

(

1− e−βj

)







dφ+

∫ τ

0

M
∑

m=1

∫ φ

o
(βm − βmk) e

−(βm−βmk)θ·

M
∏

j 6=m

(

1− e−βjθ
)

dθβmke
−βmkφdφ (B.1)

where βm,k’s are the parameters of the exponential random variables associated with the

corresponding channels between node m and node k, and βm =
∑N

k=1 [βm,k + βk,m] ,m =

{1, . . . ,M}. Taking βm,k = β and using exponential expansion, a high-SNR approximation for

(B.1) can be shown to be equal to: F (τ) ∼= (2Nβ)M−1βτM . Now, the probability that any

relay can successfully decode all N packets in the first stage is P (S) =
∏N

k=1 P
(

|hkr|2 > τ
)

=

∏N
k=1 (1− F (τ)) = (1− F (τ))N . Similar to the definition of Fm, let Fk denote the event that

k out of K relays fail to receive all the packets: P (Fk) =
(K
k

)

P (S)K−k(1 − P (S))k. Using

similar techniques as in the proof of Theorem 1, it can be shown that Pr(Ek) ∼= K1τ
Mk where

K1 =
(

K
k

)

(2N)(M−1)kβMkNk.

Also let Es,t(k) denote the event that s channels out of N source channels and t channels

out of K − k relay channels were operational. Then we have

P (Es,t(k)) =

(

N

s

)

PN−s
0 (1− P0)

s

(

K − k

t

)

· F (τ)K−k−t(1− F (τ))t.
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Notice that, since ΓN (A) = N we have Ei = Eup
i . Therefore, we have

P (Ei) =
K
∑

k=0

P (Ek) ·
N−1
∑

{s,t|s+t=0}

P (Es,t(k)). (B.2)

It can be shown that P (Es,t(k)) ∼= K2τ
(N−s)++(K−k−t)+M , where (x)+ = max(x, 0) and K2 =

(N
s

)(K−k
t

)

βN−s+(K−k−t)M (2N)(M−1)(K−k−t) and hence P (Ei) ∼= K1K2τ
Mk+(N−s)++(K−k−t)+M .

We need to find out

min
{s,t|s+t={0,...,N−1}}

((N − s)+ + (K − t)+M). (B.3)

We need to consider two different cases: K < N−1 and K ≥ N−1. For the first case, choosing

t = K and s = N − 1 − t = N − 1 − K achieves the minimum: (N − s)+ + (K − t)+M =

(N − (N − 1 −K) + (K −K)M = K + 1. And for the second case choosing t = N − 1 and

s = 0 achieves the minimum: (N − s)+ + (K − t)+M = N + (K − (N − 1))M . Now, rest of

the proof can be completed using similar techniques as in the proof of Theorem 1. �
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